
Intelligent Agents Group Project: Group A

Word Count: 1,097 / 1,100

Development Team Project: Project Report
Group A will develop a multi-agent digital forensics system to identify file types on a
system and store and report its results. It will determine file types, verify MIME
types, summarise text and report the type count. Group members are:

Chris (UK) - Team Leader, Requirements, Functionality, Design
Ahmed (Bahrain) - Literature Review, Challenges, Design Pros and Cons, Developer
Yassir (UK) - Report Writer, Diagrams
Lisa (Vietnam/Austria) - Quality, Compliance Review

Digital forensics has three main phases: acquisition, consisting of interaction with the
source medium, analysis, involving inspection and identification of files found there,
and presentation of statistics or a description in legalese (Carvey & Altheide, 2011:
3-4). These can be split into more phases - Fig 1:

Fig 1: Process Flow (Ghazinour et al, 2017)

Several tools already perform these tasks, including EnCase, a fast utility in use by
most security organisations, the open-source Digital Forensic Framework,



Pro-Discover, which includes a “smart agent,” Forensic Toolkit, the command-line
Sleuth Kit, etc. (Ghazinour et al, 2017).

The requirement is to collect information about file types, verify that files actually
contain data appropriate to their extensions, summarise briefly any text files, archive
the results, perform statistical analyses of the number and ages of each file type and
report on the results in plain English.

Design and Methodology

Symbolic, reactive and hybrid Python agents with appropriate libraries will perform
different tasks, passing on commissives in an agent control language such as KQML
or KIF (Labrou & Finin, 1994), running mainly in sequence, each being locked until
valid data is passed by the previous one using KQML.

The Requirements symbolic agent receives and interprets the user requirement in
plain English, using the spaCy NLP module, passing it to the Search agent in JSON
format (drive letter and file mask) within the KQML message - Fig 2:

Fig 2: KQML message containing JSON parameters.

The Search reactive agent searches using drive_letter\file_mask, passing the result
in JSON (list of file paths/names) to the MIME reactive agent, which loops through all



the files, opening each one and noting the MIME type of its contents. This passes to
the Types agent an array of objects, each consisting of a file path\name and its
MIME type.

The Types symbolic agent loops through this, parsing out each file’s extension and
using Python’s mimetypes module to check MIME types. It passes to the Text agent
the JSON objects with a third key-value pair called RightType, containing True if the
MIME and extension match, otherwise False.

The Text hybrid agent loops through the array, opening all files containing text, using
the Transformers module to write a one-sentence summary (without commas) in a
fourth key-value pair called Summary, which is passed to the Stats, Summary and
Archive agents.

The Stats reactive agent builds up an array of file type descriptions, incrementing
each type’s counter as it loops through the files. It outputs just this array, which will
also include a count of extension/MIME mismatches for each type. Simultaneously,
the Summary hybrid agent writes a short summary of the combined summaries
produced by the Text agent.

The outputs of the Statistics and Summary agents are sent to the Report agent,
which uses the Transformers NLG module to produce a report in plain English, while
the Archive reactive agent saves the results to a database.

The sequence is illustrated in Fig 3.

Fig 3: UML sequence diagram of the Digital forensics system



Challenges and key findings

Multi-agent systems have received tremendous attention as solutions for complex
problems. Common challenges are task allocation and coordination between agents
(Dorri, A., Kanhere, S.S. and Jurdak, R., 2018). The proposed approach uses a
modular design which defines each agent’s role and how it communicates to the next
agent, enabling better organisation and maintenance. With agents operating
independently in sequence, large datasets could introduce latency as the system
waits for agents to complete their tasks before passing data on. Setting limitations to
data size for example could solve this.

The Text agent that loops through the text files to produce one sentence summaries,
may have severe problems with accurately summarising large text documents with
only one sentence. There might be one massive text document in the library that
delays the entire process.

Multi-agent systems have become known for their robustness and reliability;
However, a common hurdle is that the agents often lack specific domain knowledge
(Ren, Z. and Anumba, C.J., 2004). Since this design assigns agents simple tasks
and gives them the relevant tools, it will not suffer from the main hurdle found in
complex multi-agent systems. The simple sequential design also allows for easy
testing and debugging, as it should be clear which agent is causing any bottlenecks.
The design is scalable as agents can always be added or tweaked to improve
performance or add more functionality to the system.

The main issue of this system is the expected performance overhead of running
multiple agents. Agents will often have to wait for other agents to transmit data
before they start their tasks. This will introduce potential bottlenecks and latency to
the system. Dependencies on external libraries introduce risks related to making
sure each agent is using the optimal library for their respective task and requires
constant maintenance. Some libraries may become outdated or dysfunctional in
future updates. The “spaCy” library that is used in this design was tested to be the
most performance efficient library when compared to three other major libraries,
though it still had issues with accuracy (Al Omran, F.N.A. and Treude, C., 2017).

Conclusion

This multi-agent based digital forensics system will allow users to quickly scan
through folders to get a simple summary of what is within them. The proposed
methodology explains the sequence of what tasks will be performed by which
agents, using the specific tools they are given. Python gives access to an extensive
list of libraries which should allow for plenty of solid options on which libraries each
agent can possibly use to complete their respective task. This will require extra
maintenance in managing which libraries each agent uses but will also increase the



system’s longevity as there will likely be many good alternatives when a particular
library becomes outdated.

Going forward it will be crucial to test how long each agent takes to complete their
given tasks, to see where the potential bottlenecks may occur. Optimising each
individual agent’s ability to tackle their respective tasks is going to be critical to the
success of the entire system. By addressing these concerns, the proposed design
should provide a reliable and accurate digital forensics tool.

References:

Al_Kholy, M.S., Khalifa, A.R. & Alsaied, M.G. (2010) A Systematic Approach for
Mobile Agent Design Based on UML. Journal of American Science 6(12): 284-290.
Available from
https://www.jofamericanscience.org/journals/am-sci/am0612/32_3283am0612_284_
290.pdf [Accessed 30 August 2024].

Al Omran, F.N.A. & Treude, C. (2017) Choosing an NLP library for analysing
software documentation: a systematic literature review and a series of experiments.
IEEE/ACM 14th international conference on mining software repositories (MSR)
187-197.

Bauer, B., Odell, J. (2005) UML 2.0 and agents: how to build agent-based systems
with the new UML standard. Engineering Applications of Artificial Intelligence
18(2005): 141–157. Available from
https://www.sciencedirect.com/science/article/pii/S0952197604001903 [Accessed 30
August 2024].

Carvey, H. & Altheide, C. (2011) Digital Forensics with Open Source Tools.
Amsterdam: Elsevier.

Dorri, A., Kanhere, S.S. & Jurdak, R. (2018) Multi-agent systems: A survey. IEEE
Access 6: 28573-28593.

Ghazinour, K. et al (2017) ‘A Study on Digital Forensic Tools’, IEEE International
Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI).
21-22 September. DOI: https://doi.org/10.1109/ICPCSI.2017.8392304

Huget, M-P., Odell, J., Bauer, B. (2006) UML and Agents: Current Trends and Future
Directions. OOPSLA Workshop on Agent-Oriented Methodologies, Seattle, WA,
USA, 4-8 November 2002. Available from
https://www.cin.ufpe.br/~in1096/2006-1/UML%20and%20Agents-%20Current%20Tr
ends%20and%20Future%20Directions%20(Huget_uml)%5BB-I%5D.pdf [Accessed
30 August 2024].

https://www.jofamericanscience.org/journals/am-sci/am0612/32_3283am0612_284_290.pdf
https://www.jofamericanscience.org/journals/am-sci/am0612/32_3283am0612_284_290.pdf
https://www.jofamericanscience.org/journals/am-sci/am0612/32_3283am0612_284_290.pdf
https://www.sciencedirect.com/science/article/pii/S0952197604001903
https://www.sciencedirect.com/science/article/pii/S0952197604001903
https://doi.org/10.1109/ICPCSI.2017.8392304
https://www.cin.ufpe.br/~in1096/2006-1/UML%20and%20Agents-%20Current%20Trends%20and%20Future%20Directions%20(Huget_uml)%5BB-I%5D.pdf
https://www.cin.ufpe.br/~in1096/2006-1/UML%20and%20Agents-%20Current%20Trends%20and%20Future%20Directions%20(Huget_uml)%5BB-I%5D.pdf
https://www.cin.ufpe.br/~in1096/2006-1/UML%20and%20Agents-%20Current%20Trends%20and%20Future%20Directions%20(Huget_uml)%5BB-I%5D.pdf


Labrou, Y. & Finin, T. (1994) A semantics approach for KQML—a general purpose
communication language for software agents. CIKM '94: Proceedings of the third
international conference on Information and knowledge management: 447-455. DOI:
https://doi.org/10.1145/191246.191320

Ren, Z. & Anumba, C.J. (2004) Multi-agent systems in construction–state of the art
and prospects. Automation in Construction 13(3): 421-434.

Singh, G., Sharma, M., Singh, A. (2012) Using Intelligent Agents for Building
Evacuation - A UML Approach. International Journal of Computer Applications
50(18): 14-17. Available from
https://www.ijcaonline.org/archives/volume50/number18/7870-1147/ [Accessed 30
August 2024].

https://doi.org/10.1145/191246.191320
https://doi.org/10.1145/191246.191320
https://www.ijcaonline.org/archives/volume50/number18/7870-1147/
https://www.ijcaonline.org/archives/volume50/number18/7870-1147/

