
// First slide

Hello and welcome! Today I will be making a presentation for the development project in the

intelligent agents' module at Essex University.

// Index of contents

In this presentation, I will start by giving a quick introduction, then a project overview. After

that we’ll discuss the different technologies & libraries used to build the system and walk

through the decision-making process in the system architecture. Challenges faced will be

covered, and the presentation will include pieces of the code used in building the system

and a couple of testing demonstrations. After that a short discussion of findings and a

summary of future enhancements ideas will be mentioned. References of the stats will be

available at the last slide.

// Introduction

The digital forensics field has been highly affected by the recent advances in technology. In

the last few years, the data quantity within each storage device has grown significantly.

Leaving the manual systems outdated and not able to handle that amount of data. The

image on the left demonstrates the statistics of data growth within a range of 15 years. As

you can see It is expected that by 2025 it will reach 181 zettabytes.

Automation is one of the proposed solutions. The main motive to use it is to complete entire

tasks or processes with minimal or without human intervention at all. It has already been

proven to complete the jobs faster and reduce significant costs.

Among the top-used approaches for automating digital forensics is the multi-agent systems.

The reason behind this is their ability to breakdown complex forensics into small tasks that

are shared between agents. These agents collaborate and communicate with each other to

analyze file systems, collect evidence, and produce reports.

On Unit 6 we have decided to go through with the Digital Forensics task to build our

Intelligent-agents system. The final decision was to build a multi-agent system capable of

identifying specific file types that are text types in a filesystem, producing a report of

statistics and archiving the results for future analysis. The project aims to automate the

digital forensics tasks such as file type identification, mime type verification and text

summarization and reporting.

// Overview

We have decided to use Python as a coding language due to its simplicity and the various

intelligent agent libraries that can be used with it.

To achieve our required goals with the system, a couple of techniques and libraries were

chosen:

For example, The Spacy library is an open-source python library designed for natural

language processing. It is known for being efficient in handling text input from human users

in multiple languages. It will be employed to interpret the user requirements from plain

English into a set of values passed between the agents.

The Transformers library runs on advanced machine learning models that are pretrained. It

is mainly employed in natural language processing models. In this system it will be used to

summarize the text inside each file and produce a combined summary at the end.

The “mimeTypes” library provides the possibility to extract the file extension and map it to

its corresponding MIME types. It will serve to check the format in this system whether it is a

valid text type or not.

Some techniques acquired in the intelligent agents’ module were also employed in this

system. For example, to achieve safe and reliable communication between the agents we

used the knowledge query and Manipulation language known as KQML. It is a

communication protocol used to exchange information between intelligent agents in a

multi-agent system. Natural language processing is used as well as discussed.

// System Design

The system will be composed of a variety of different intelligent agents, some are

Symbolic, or reactive and others are hybrid. Each agent will have a specific role in the

lifecycle of the task, we have decided to keep each agent assigned to a simple small task

so that the maintenance and debugging would be manageable. The agents will run in

sequence with the other agents. Each time an agent is executed it does its task then

passes the data to the next one.

The agents will communicate with each other using KQML messaging to pass and receive

data. The image on the left shows the prototype of the user request we are testing and how

it passes the message to the first agent named requirements. The image on the right shows

the message being acknowledged by each agent.

// Agents’ breakdown

There is a total of 7 agents that construct the system in general:

The first Agent named requirements which is a symbolic agent is the one responsible for

receiving the user input in plain English. Then, using the spacy natural language

processing, it is able to abstract the necessary information about the directory and

filetypes which the user would like to search and summarize. It then passes that data to

the next agent via a Json file.

The second agent Search, which is a reactive agent, receives the file types and the folder

where to look. It then searches that directory to see if it is found {currently we are limiting

the number of folders and filetypes to search for prototype purposes}. Once the search is

finished the total count of files found and their details such as paths will be passed to the

next agent using an array of objects. {code demo?}

The next agent in the list is the Types agent, it is a symbolic agent that loops through the list

of files found to verify their mime types. Depending on the outcome the counter of right and

wrong types will be calculated and passed through to the next agent.

The text agent, which is a hybrid agent, will receive that data and loop through the values

by opening each file using its path to get the text inside. It will then produce a summary

using the transformer library summarizer and pass that to the two next agents via a JSON

file.

The stats agent is a reactive agent that builds a summary of stats made from searching the

files. It produces an array containing the total number of files found, their paths, how many

had right or wrong types.

Simultaneously, the summary agent uses the preproduced summary from each file, then

using that it comes up with a combined summary of all their contents.

Both the stats and the summary agent's outcome will be passed to the Report agent. It

uses the transformer's natural language processing module to produce a final report in

plain English.

Finally, the archive agent will save the report as a .txt file containing data in plain English

into a filesystem folder. And after that the process is terminated.

// UML diagram page

The UML diagram illustrates the sequence of the run. It starts with the user input being

passed to the requirements agent, then goes through each agent that completes its task,

then once the report is produced the process is terminated.

// Implementation

As a prototype the system was developed in a local environment using Visual Studio code.

The libraries used had their module names stored in a text file inside the libraries folder to

simplify the set-up process.

We have set up a simple KQML messaging with “ask” and “reply” actions only just for

prototyping purposes. However, the general state of the protocol would need to have more

actions set up to check the execution status and simulate real simultaneous messaging

between the agents. The image on the right showcases the two messaging types we have

now which are send and reply.

Then the files' structure consisted of a “taskExecutore” file that configuration setting the

order of the run cycle. After that each agent file was stored withing the Agents directory.

The error handling process consisted of trying to catch several errors such as empty

folders, invalid types, or empty text files that we needed to summarize. As you can see on

the image there are a couple of errors for invalid messages or senders. And how they are

being treated.

// Unit Testing

To automate our testing process, we also added some unit tests. The tests cover all agents

and their tasks. The unit test library which is a built-in python module was used to test our

system. The current tests cover the cases of how a valid run should generate the file and

how a run with a folder that does not contain any text files should error. In this case we

mocked the agents to amend their expected output to see how the overall run responds.

Two tests were created. One for the “taskExecutor“ that contains all the agents'

executions, and the requirements agent on its own due to its importance interpreting the

initial user input. The screenshots on the left-hand side illustrate the current unit tests built

and their successful run.

// Smoke Testing

A short smoke testing was done on the app to be able to directly visualize the output. The

cases were to test getting files in a folder that exists and had 2 text files, and test getting

files in a folder that exists but has no text files. The two images on this slide show the

output of each test.

// Challenges

There were a couple of challenges faced during the building and the testing phases of the

application. For instance, the total run time was large when the number of text files found

within the folder was high. The image below shows the total execution time when there are

more than two files on the folder.

The second challenge was the bugs faced when corrupted or invalid files were found. That

resulted in the specific agent returning invalid data that the next agent was not expecting.

The third challenge was the variety of permissions of some files and folders. Currently the

agents are expected to have access permissions to all text files. In advance, they require

permission to create the report inside the “savedReports” folder.

The final challenge was the dependency on external libraries. The choice between a

number of different libraries to complete the task at hand was based on a couple of points

such as public availability, security and performance. However, the total dependency on

external libraries might come with several errors in the future and continuous updates will

be required.

// Future enhancements

The system in hand can already be described as robust and reliable. However, a couple of

points must be considered to ensure proper scalability.

For example, the use of advanced AI modules rather than the ones currently used might

come handy in improving the overall performance, and the quality of the outputs.

The system must also be able to handle all directories and filetypes within a filesystem in

the future depending on the user’s request.

In addition, to prevent unsuspected errors and failures, we can implement locking into the

agents. When an agent is executed, it locks the transaction until it is successfully

executed. If not, it should terminate the process and output the error. This way we can

ensure that first no agent will be executed before the termination of the previous one. And

second it would not run unless the expected data is passed to it.

Adding more KQML message types such as “ask if” to check if there’s a specific condition

that applies which the next agent needs to perform. “Preprocess” could also be a message

to check how different data is supposed to be treated by the agent if the sender agent

needs special conditioning the that exact data.

Finally, to ensure good improvements in the future. Archiving the errors and alerting the

system administrators might help to keep an eye on the users failed action and will

facilitate the debugging process. The long-term goal is to achieve complete autonomous

automation.

// Conclusion

To conclude, the impact of Intelligent agents is already significant in the field of digital

forensics and its applications are several. The development of this multi agent system

aimed to address one of the challenges in digital forensics which is file content reading and

interpretations.

We utilized different libraries and technologies such as Transformers and spacy for natural

language processing. These proved efficient in performing tasks such as text

summarization and report generation. Despite some challenges like handling the file

permissions or corrupted files or long run times especially with large datasets.

A couple of techniques within artificial intelligence such as KQML approach and natural

language processing have been employed in the process.

In the future, several enhancements to this system could help improve scalability and

reliability. As I mentioned in previous slides, a few examples such as using more advanced

AI models, implementing locking.

Finally, although we have implemented some unit tests, ensuring full test coverage always

will help to reduce the number of unexpected bugs.

Ensuring these improvements are implemented. Can play a big part to ensure that the

system can scale to large datasets and handle more complex tasks while maintaining

performance and reliability.

Thank you for watching this presentation. I am happy to answer any of your questions.

